
Conflict Resolution Strategies during Product Configuration 

 

Alexander Nöhrer 

Johannes Kepler University 

Institute for Systems Engineering 

and Automation (SEA) 

Linz, Austria 

alexander.noehrer@jku.at 

Alexander Egyed 

Johannes Kepler University 

Institute for Systems Engineering 

and Automation (SEA) 

Linz, Austria 

alexander.egyed@jku.at 

 

 
Abstract—During product configuration, users are prone to 

make errors because of complexity and lack of system 

knowledge. Such errors cause conflicts (i.e., incompatible 

choices selected) and current state-of-the-art configurators 

require users to undo earlier decisions made or restart the 

decision process altogether. This paper discusses these and 

other conflict resolution strategies; even ones that allow users 

to introduce conflicts and solve them at a later time of their 

choosing. This is analogous to the notion of living with 

inconsistencies which is not only tolerated but deemed 

necessary in modeling. We will discuss that allowing conflicts 

to exist during the configuration process (living with conflicts) 

is likewise beneficial during the configuration process because 

it is easier to resolve conflicts at a later time when the user’s 

intention is better understood (i.e., more input was provided). 

However, the dilemma with living with conflicts is that 

traditional reasoning mechanisms become inadequate. For 

example, it is common during configuration to eliminate 

choices of future decisions (unanswered questions) based on 

decisions that have already been provided and we will discuss 

how to continue doing so in the presence of conflicts. 

Furthermore, we will discuss that understanding the order 

(history) of decisions made is beneficial for better resolving 

conflicts later. 

Keywords-Product Line Engineering; Formal reasoning; 

User Guidance 

I. INTRODUCTION 

User guidance during product configuration is perceived 
to be a straightforward activity where a user answers a set of 
pre-defined questions, usually by selecting among their 
choices. For example, an online laptop configurator is such a 
system. It typically has predefined questions for building a 
laptop, each question with a predefined set of choices (e.g. 
RAM 4GB or 8GB). 

Without detailed expert knowledge, users are confronted 
with the exponentially complex task of navigating among 
interdependent choices and their implications without 
explanations. It is state-of-the-art to support users by asking 
questions in a predefined order and presenting only those 
choices of the remaining questions that are still available [1]. 
For example, after selecting a 32-bit operating system for the 
laptop, the 8GB RAM choice becomes unavailable. Initially 
all choices are available, these are then incrementally 
reduced as the user answers questions (decides on a choice). 

Current approaches to product configuration are able to 
restrict user choices based on decisions already provided, as 
for instance covered in [2-4] and other commercial and 
research prototype configurators. However, if the 
configurator does not support conflicts and a desired choice 
is already eliminated then the user has only one option: undo 
previous decisions and trying alternative combinations that 
might be acceptable without knowing whether the 
alternatives will lead to such dead ends again! For example, 
once the user encounters that the 8GB RAM choice is not 
available, then this requires undoing the operating system 
choice. However, without domain knowledge this would be 
hard to guess. Moreover, the user might be uncertain as to 
whether changing the laptop type would resolve the problem 
also. This leads to exponentially increasing combinations on 
how to resolve such conflicts. Without good tool support, 
users will find it very hard indeed to navigate this jungle of 
questions and choices – particularly, if the user is not an 
expert user which is the case in most situations. 

To help the user in this complex conflict resolution task, 
for example the works by [5] could help identify those 
decisions that are in conflict with a desired choice. Only 
these decisions must be revisited (i.e., undone) which is more 
efficient than revisiting all decisions. We can think of such 
an approach as a selective undoing of conflicting decisions to 
be used at the time where a desired choice is not available. 
While such an approach reduces the complexity of the 
problem, it does not avoid the fundamental problem: the user 
still needs to navigate alternative choices of those questions 
in the hopes of identifying those that do not eliminate the 
desired choice. Moreover, in the case where multiple, 
alternative options exist on how to resolve the conflict; the 
user has to make a suboptimal decision of which answer to 
undo. A decision is suboptimal because the undoing would 
not consider future user decisions for a more optimal 
reasoning. 

To avoid making suboptimal decisions, the alternative is 
to resolve conflicts at the end – after all questions have been 
answered. For instance the approach by [6] advocates such 
an alternative by helping identify conflicting decisions at any 
point in time, to find the one valid (partial) configuration that 
closest matches the desired decisions (valid configuration 
with minimal deviation from the user selected configuration). 
Such an approach allows users to select conflicting choices. 
However, the disadvantage of resolving conflicts at the end 



o

o
o

o
x x

x
o

x
S0:

x

o o

 

Figure 1.  Normal working mode.  

is that users then lose the ability to have choices reduced 
automatically and incrementally as answers are provided – 
an important feature discussed earlier. This downside exists 
because existing reasoning engines (e.g., Theorem proofing 
to check for satisfiability also known as SAT solvers [7]) do 
not readily function in the presence of contradicting 
information. The user is on his/her own which may be ok for 
the choices the user wanted to have despite the conflicts, but 
unnecessary for the other choices where multiple choices 
would have been acceptable. Moreover, reasoning as it is 
currently done, ignores the order in which questions are 
answered (and conflicts are encountered) which we will see 
later weakens the kinds of analyses we can do. 

The ideal solution would be one that allows users to 
select conflicting choices, however, still supports 
incremental reasoning, such as the elimination of choices. 
This requires reasoning in the presence of conflicts. This is 
not unlike software modeling where reasoning in the 
presence of inconsistencies is not only tolerated [8] but even 
advocated as a normal way of life [9]. This paper discusses 
our approach of living with conflicts during product 
configuration. For completeness, we describe all possible 
conflict resolution strategies, from simple ones where living 
with conflicts is not necessary up to complex ones, which 
require living with conflicts. All of them are useful and 
suitable in different situations of the configuration process. 
All of them have a right to exist. 

The main contribution of this paper is the ability to 
reduce the remaining choices of questions despite the 
presence of conflicts because this aspect is new and novel 
(i.e., not covered in related work). This is done by 
conservatively excluding offending decisions from the 
reasoning core and continuing reasoning with the subset of 
non-conflicting decisions. Another contribution is the use of 
the history of decisions made (the order in which questions 
are answered) as meta information for identifying the 
offending decisions. In essence, if a user desires a choice and 
accepts introducing a conflict, then this choice must be more 
important to the user than some previous decisions. Our 
approach makes use of this knowledge which is another 
reason why it is beneficial to still have the ability to reduce 
choices in the presence of conflicts to deal with multiple 
conflict situations. The history thus gives insights on what 
the user’s intentions are while he/she is still configuring a 
product. Depending on these intentions different strategies 
can be utilized to resolve conflicts. 

This paper is structured as follows: In Section II we 
describe the scenario and problem we address. This is 
followed by the vision of how we want to tackle the problem 
in Section III. In Section IV we discuss the state-of-the-art 
and related work. In Section V we describe in detail how our 
vision can be realized. The bigger picture is discussed in 
Section VI. Finally we draw a conclusion and give an 
outlook to future work in Section VII. 

II. SCENARIO AND PROBLEM 

During product configuration the preferred working 
mode is to answer questions by sequentially iterating over 
features until decisions on all variation points are made. 

Since there are often dependencies among these questions 
(variation point, or feature), answering a question may affect 
other questions: it may enable them, it may reduce some of 
their choices, and it may even answer or eliminate them. 

As a real example for a decision-oriented product-line we 
investigated the laptop configuration system on the DELL 
website [10] (during the period of February 9

th
 till February 

12
th

 2009) and reverse engineered its product-line model. For 
illustration purposes we picked three questions about the 
Screen Resolution, the Screen Size, and whether a Webcam is 
integrated into the screen. The choices for each question 
range from more complex enumerations (e.g. WXGA 
1280x800, WUXGA 1920x1200, XGA 1024x768, etc. for the 
Screen Resolution) to a simple yes or no (for the Webcam). 
In this model, many relations between questions exist; 
relations can also be described as dependencies and 
constraints respectively. For example since no laptop with a 
12.1″ Screen Size and a WUXGA Screen Resolution exists, 
these two decisions would not be compatible and result in a 
conflict. This and other relations are included in the model 
together with the choices. 

Current state-of-the-art has ample tool support for 
eliminating choices that are no longer available after a user 
decision (an answer to a question). In our example this 
would mean, that the decision WUXGA for Screen 
Resolution would eliminate 12.1″ as a Screen Size amongst 
other effects. As a result of these eliminations, a question 
may even be answered automatically, if all its choices but 
one are eliminated. Figure 1 S0 depicts this desired 
configuration process. It represents a decision tree (flipped 
sideways) where the big circles represent the decisions made. 
The leafs at each level represent the alternative choices that 
were available, but were not chosen by the user (o) or the 
alternative choices that were eliminated due to earlier 
decisions and their effects (x) – and thus were not available 
to the user at the time the question was being answered. The 
cone indicates the fact that the more questions the users has 
answered, the closer the user is to an actual configuration. 
When the last question is answered then the system is fully 
configured (and all variability is resolved). The cone thus 
denotes the number of possible configurations, which gets 
reduced the more questions are answered. As long as users 
make no decisions that conflict with earlier decisions, this 
approach works very well and is also well supported in [2, 
11]. 



I
o

o
o

o
x x

o

xx

o o
o

 
Figure 2.  Vision. 

During the configuration process, users lacking precise 
system knowledge may discover at one point that a choice 
they desire to have is no longer allowed anymore because of 
earlier decisions – meaning the tool eliminated a desired 
choice because of dependencies. At this point in the 
configuration process several aspects come into play: 

 

 Users may want an explanation why the choice is no 
longer available (and perhaps desire to reconsider earlier 
decisions made). 

 Users may want to continue configuring the product and 
resolve the problem later. 

 
Note, the DELL example is quite analogous to software 
engineering product lines which we also studied [12]. This is 
a small instance of a larger engineering challenge. Until a 
few months ago, DELL laptops could only be configured 
through a pre-defined order of questions at a predefined 
starting point (e.g., what type of laptop). Recently, DELL 
changed this to allow multiple starting points by means of 
filtering their products according to specific criteria (e.g., 
memory, screen size). This filtering seems not to work in 
every case, and not to be exact. This points to software 
engineers maintaining this feature independently. Also, 
DELL follows a rather simplistic and unsatisfactory (but 
easy to implement) notion of living with conflicts. Choices 
are not eliminated – analogous to the Continue Manually 
strategy discussed later in Section V.A.2)a). Clearly, 
software engineers facing similar problems to the DELL 
configuration system would benefit from our approach to 
allow arbitrary starting points and still being able to reason in 
the presence of conflicts. 

III. VISION 

Our general vision is to guide and support users but also 
engineers in situations that cannot be automated. This 
guidance should be systematic, non intrusive and most 
importantly allow users the highest degree of freedom, 
meaning:  

 

1) Users are allowed to make decisions in any order (if so 

desired). 

2) Users are allowed to resolve conflicts at any time of 

their choosing. 

3) Users should not be bothered with questions that can be 

answered through reasoning, meaning the interaction 

should be reduced to the necessary minimum. 
 
Of course, the users should continue to benefit from the 

kinds of automations they expect despite these freedoms – 
for example, still eliminating choices that are no longer 
available based on previous answers or in reducing the 
needed user/engineer input to a minimum [12]. Finally, no 
additional annotations should be required from the user. In 
other words, the user should not be subjected to providing 
input that goes beyond what is traditionally done during 
product configuration. 

To accomplish those goals we are going to tailor a 
reasoning engine to support reasoning in the presence of 
conflicts and we are going to use timeline information of the 
configuration process itself (when happened what). Both 
concepts have not been used before to resolve configuration 
errors, to the best of our knowledge. This will enable us to 
apply different strategies according to different assumptions 
in combination with the current state in a configuration 
process – all of which we will describe in detail in the next 
section. 

This work also builds a bridge to the community that 
works on the problem of living with inconsistencies. Without 
a similar notion of “living with conflicts”, users would not be 
allowed to introduce conflicts or would be forced to fix them 
right away, which are both situations that are not always 
desirable. The conflict resolution strategies emphasized in 
this paper are thus strategies where conflicts are tolerated to 
some degree. This implies that users must be allowed to 
create conflicting situations. 

Our envisioned optimal configuration process is shown in 
Figure 2, which illustrates the introduction of a conflict into 
the normal working mode. The I denotes the decision that 
introduced the conflict (inconsistency) and the shaded circles 
represent the decisions that I is in conflict with. Again the 
cones denote the number of possible choices left to choose 
from, without violating any constraints (which is analogous 
to how close the user is to a configuration). As a result of 
getting closer to a configuration the user’s intentions get 
more evident and could thus be used as a basis for reasoning. 
Also if users choose to continue making decisions before 
resolving the conflicts, the tool should still support them. 
This support should be realized by eliminating choices of the 
remaining questions based on the previous answers that are 
not involved in the conflict. As a consequence, the 
configuration process is still able to detect new conflicts. 
Since conflicting answers are no longer used to eliminate the 
choices of remaining questions, there are likely more choices 
available. The cone after a conflict is thus bigger again. 

In the following, we will discuss resolution strategies for 
conflicts. As an example for such a conflicting situation we 
will build on the DELL example discussed earlier - 
specifically three decisions. The first decision is 12.1″ as a 
Screen Size, the second XGA 1024x768 as a Screen 
Resolution, and the last yes for Webcam. The problem with 



those three decisions is that DELL does not sell a laptop 
fulfilling all three decisions. Only laptops with any two of 
those decisions are sold. The Vostro 1310 with a Webcam 
and XGA Screen Resolution, the Inspiron Mini 12 with a 
Webcam and 12.1″ as a Screen Size, and the Latitude E4200 
with 12.1″ as a Screen Size and XGA Screen Resolution. So 
assuming the user has not answered the question about the 
laptop Model yet, the Latitude E4200 should be excluded 
because it has no Webcam. Furthermore the decision whether 
it should be the Vostro 1310 or the Inspiron Mini 12 Model 
(other available models are left out for brevity), would in fact 
point to the real conflict in the configuration. 

IV. STATE OF THE ART 

Currently different technologies exist to support the 
proposed normal working mode; but also to detect, explain 
and fix conflicts. To enable the normal working mode a few 
key questions need to be answered: 

 

1) What are the immediate effects of a decision and the 

elimination of a choice respectively? 

2) What are the ripple effects of a decision and the 

elimination of a choice respectively? 
 
Once the system is modeled as a constraint satisfaction 

problem (CSP), these effects can be calculated with SAT- or 
CSP-Solvers and used for eliminating conflicting choices 
[11]. Translating configuration problems/feature models/ 
decision to CSPs is solved and described for example in [13]. 

As soon as the user leaves the normal working mode and 
introduces a conflict, other approaches are needed in addition 
to the checking of satisfiability. With a SAT-Solver conflicts 
can be detected as a result of the system not being satisfiable 
anymore, but normally it is not possible to explain where the 
conflict is coming from or even how many conflicts there are 
in one configuration. As a consequence different 
technologies are needed to detect/explain/fix a conflict. 

For detecting and explaining conflicts in feature models 
abductive reasoning can be used as described in [5]. In the 
UML modeling world Egyed [14] proposed a method for 
instant checking and as a result detection of inconsistencies 
(can also be seen as a conflict). Furthermore this approach 
also implicitly explains why an inconsistency occurred, by 
pointing to the consistency rules that were violated. 

Egyed also proposed methods for fixing inconsistencies 
in UML models [15, 16]. This technology is able to identify 
the concrete model elements that are violating a given 
consistency rules. Applied to our work, model elements are 
our questions and consistency rules are the relations that 
trigger conflicts. We believe that this technology can be used 
to efficiently and correctly identify offending question in 
case of a conflict. White et al. proposed a method for 
diagnosing product-line feature models in [6] that in addition 
proposes minimal solutions to the user. Felfernig et al. also 
proposed methods for resolving conflicts or as they call it: 
computing reconfigurations [4]. These technologies are very 
useful but for our approach we are going to need more than 
one or several solutions. One single solution or even a few 

different solutions almost never actually involve changes in 
all decisions that are involved in the conflict. Since our 
vision is to resolve the conflict with new decisions and 
reason about choices of yet not made decisions, knowing 
only a few solutions (not all decisions involved in the 
conflict) is not enough. Including decisions involved in the 
reasoning about future decisions would bias the results. 

In the field of SAT-Solvers minimal solutions can be 
obtained by searching for a minimal unsatisfiable subset 
(MUS) of a CNF formula [17]. With the help of such a 
MUS, decisions that have to be changed to get to a valid 
configuration can be easily identified. Identifying the 
maximum number of satisfied constraints, and CNF clauses 
respectively, in a conflicting configuration is also a 
possibility. This can be achieved for example with 
algorithms that solve the Maximum Satisfiability problem 
(Max-SAT) [18] or solutions to over-constrained Constraint 
Satisfaction Problems [19]. But again the problem is that not 
all the decisions involved in the conflict are necessarily 
identified with these approaches. Nevertheless those 
technologies are useful for resolving conflicts and are part of 
the resolving strategies described in the next Section, but not 
applicable for our envisioned working mode. 

As mentioned in the vision in Section III to ensure that 
users have the highest degree of freedom depends on two 
things. With regard to the first point that our current work 
[12] describes how to order questions so that the user input 
gets minimized without imposing the order onto the user. 
The order is determined automatically based on effects 
decisions would have on other questions. This is an 
incremental process that happens after each decision made 
by users. In addition to supporting users choosing the next 
question, engineers also profit from this approach as they do 
not need to think about an optimal order during modeling. 
But engineers can influence the outcome of the proposed 
order through special relations if they wish to do so. 

V. CONFLICT RESOLVING STRATEGIES 

In this paper, we keep the resolving strategies simple and 
focused on product configuration, but we believe that the 
basic strategies discussed here also apply to more general 
user-guided scenarios. The most important concept that we 
are using is the history of user decisions, as we mentioned 
earlier. The pieces of information the sequence reveals are 
very important to us and need in our opinion to be 
considered to effectively find solutions on how to fix 
conflicts. Moreover, automatically made decisions (or 
eliminated choices) should not be considered as important as 
user made decisions when taking the sequence and history of 
decisions into account. 

Next we describe the different strategies. First and 
foremost, we must distinguish two basic cases: 

 

1) No valid configuration exists: this happens when the 

user configures a product that in this manner does not 

exist. Eventually a conflict is found which reveals this 

problem. This problem can only be fixed by identifying a 

valid configuration that is “close” to the intent of the 



I

I

S1:

S3:

IS2:

 
Figure 3.  Fix right away strategies. 

user. The works by White et al. [6] solved this problem 

with respects to a minimal solution so we do not address 

it here. 

2) A valid configuration exists but a conflict was 

encountered. This is possible if a previous question was 

answered erroneously or if the configuration process 

“forced” the user to answer an earlier question without 

the user understanding the true implications of the 

choices. As a consequence, a valid solution does exist, 

albeit some of the questions need to be answered 

differently. 
 
Note that the two cases are similar in that both find a 

conflict. The difference is simply in the argument whether an 
error was made earlier that needs to be fixed (case 2) or 
whether no error was made and the desired configuration is 
simply not available (case 1). In case 1, a heuristic needs to 
be explored to find a “close enough” solution the user might 
be satisfied with (even if not desired quite as such). In case 2, 
we have a clear error that must be identified and fixed. No 
heuristics, no approximations are necessary. We will mostly 
focus on case 2 in section A below. Case 1 will be briefly 
discussed in section B. 

A. Identifying the Error in a Conflicting Configuration 

1) Fix right away: At the exact moment the user 

introduces a conflict into the system by selecting a choice 

that has been eliminated through some relation; a fixing 

strategy can be applied to return the configuration to a 

consistent state immediately. Fixing a conflict right away 

ensures that the model stays consistent and never contains a 

conflict (no reasoning in the presence of conflicts is 

necessary). It is fairly simple to realize and handle with 

reasoning engines, since the knowledge base stays 

consistent. Different strategies to fix a conflict right away 

are illustrated in Figure 3, where the same notation is used 

as in Figure 2, for sake of brevity the alternatives choices 

for the decisions and cone are left out. To illustrate the 

different strategies we again use the example given in 

Section II. The shaded circles represent the decisions 12.1″ 

as a Screen Size and XGA 1024x768 as a Screen Resolution. 

The I represents the decision Webcam yes, the other white 

circles represent other decisions that are not conflicting with 

each other. Such decisions could be for examples about the 

CPU, RAM, hard disk, and other laptop components. Next 

the strategies are described in detail: 

a) Single Undo: The simplest way to fix a conflict and 

return to normal working mode is to retract the decision that 

caused the conflict as illustrated in Figure 3 S1. The user is 

told to try something else instead. Often this is not desired 

by the user since he/she wants the offending choice. In a 

more general modeling scenario it could also be the case 

that a different developer is continuing the work on a model 

he is not completely familiar with; in such a case Undo 

might not be such a bad idea. In approaches that do not care 

about the sequence this could also be the solution identified 

as the minimal solution, since it typically is less effort than 

changing other conflicting decisions. Applied to our 

example this would mean retracting the decision Webcam 

yes which certainly would resolve the conflict but may not 

be desired. 

b) Multiple, Sequential Undo: Assuming the decision 

that caused the conflict is important to the user and therefore 

correct, the problem must be an earlier decision. To find the 

root of the problem the simplest way is to retract the given 

decisions until the desired choice for the most recent 

decision is available. This could also imply retracting 

decisions that did not contribute to the conflict as illustrated 
in Figure 3 S2 (unshaded circles), which is not desirable. In 

addition to this it could be the case that it is sufficient 

enough to retract only one of the conflicting decisions. 

Multiple, sequential undo would retract the most recent one 

first which could fix the conflict but may not be the desired 

one. This is also the case in our example, since retracting 
either the Screen Size or the Screen Resolution would be 

sufficient to resolve the conflict, which one gets retracted 

would depend on the order the decisions were made in. 

c) Selective (Multiple) Undo: To avoid retracting valid 

decisions that do not contribute to the conflict, the involved 

decisions need to be identified. This can be accomplished 

with abductive reasoning mentioned earlier (Section IV). 

After the responsible decisions are identified they can be 

retracted directly as illustrated in Figure 3 S3. This approach 

helps reducing the needed user input compared to the 

multiple, sequential undo approach (obvious valid decisions 

do not have to be made more than once). Nevertheless in 

situations where the desired choice is excluded because of 

the combination of other decisions, it is not that simple. 

Retracting one decision or the other could be sufficient, 

however without further information this cannot be decided 

automatically. Either all participating decisions or randomly 

selected among them are retracted, or the user has to be 

asked which one he/she wants to retract – a question the 



user may not be able to answer correctly! Again this 

situation can also be found in our example, since retracting 

either the Screen Size or the Screen Resolution would be 

sufficient to resolve the conflict, but this cannot be 

automatically decided. Selecting one of those decisions 

randomly or both of them is not a desirable solution. As 

mentioned above also asking the user about which decision 

to retract might not be the best thing to do. 

The “fix right away” strategies are thus valid but often 
not desirable. However, in the absence of reasoning in the 
presence of conflicts, they are the only options available. The 
following “allow conflicts” strategies present additional 
options by living with conflicts: 

2) Allow Conflicts: Instead of fixing a conflict right 

away, it is more beneficial to let the user answer more/all 

questions. The more information is collected, the better any 

reasoning we plan on using works. This additional 

information may, for example, help in deciding between two 

alternative options for resolving a conflict. It should be the 

user’s decision when he/she wants to resolve the conflict. 

Different strategies to continue the configuration process 

with a conflict are illustrated in Figure 4, where again the 

same notation as in Figure 2 is used. These strategies are 

described in detail here: 

a) Continue Manually: Since reasoning with conflicts 

is hard, the simplest way to continue the configuration 

process is to let the user continue answer questions without 

such reasoning. However, without reasoning, the user no 

longer benefits from knowledge of how choices are affected 

by decisions; i.e., what choices are still valid as illustrated in 

Figure 4 S4. The negative effect would be that the user is not 

guided through the remaining questions and as a 

consequence has to memorize the constraints limiting the 

product configuration options. This is realistically not 

possible and unless the user is an expert user, this resolution 

strategy leads to follow-on conflicts where the user un-

intentionally makes additional errors. For any reasonably 

complex system, asking the user to configure a system 

without automated guidance is a recipe for failure. 

b) Continue with Trust: Continue with trust means, that 

assumptions are made on how much certain answers 

provided by the user can be trusted. For example, the 

decision that introduced the conflict is a decision that could 

be trusted to be important to the user – and perhaps even to 

be final. After all, if a choice is no longer available and the 

user insists on selecting that choice then the user states that 

this choice is a “must have”. Obviously, all decisions made 

earlier that are participating in the conflict could thus be 

considered less trustworthy. Based on this implicit trust 

(implied through the order in which questions were 

answered), the remaining decisions could still be reasoned 

about – at the very least to conservatively reason about 

which remaining choices to exclude. With this approach the 

user is still guided through the remaining questions and 

informed about decisions that would cause new conflicts as 

illustrated in Figure 4 S5. 

 
The last strategy S5 Continue with Trust thus is the 

strategy that fulfills all our requirements presented in our 
vision in Section III. Applied to our example this would 
mean: Assuming the first decision was about the RAM, the 
second 12.1″ as a Screen Size, the third XGA 1024x768 as a 
Screen Resolution, and the fourth introducing the conflict yes 
for Webcam. The next question could be about the laptop 
Model. Since reasoning occurs based on implicit trust the 
Latitude E4200 would be eliminated since it has no Webcam. 
In addition the remaining choices Vostro 1310 or the 
Inspiron Mini 12 would help to locate the error, since the 
Vostro 1310 is in conflict with 12.1″ as a Screen Size too and 
the Inspiron Mini 12 is in conflict with the XGA Screen 
Resolution. As required by our vision the requirement that 
the user can continue making decisions without resolving the 
conflict is fulfilled. He/she was even supported in doing so 
through the elimination of choices that would introduce new 
conflicts and finally the follow up decisions helped in 
resolving the conflict by pointing to the error. 

In addition to the implicit trust described in the Continue 
with Trust section, trust could also be based on user queries: 
As mentioned in the Undo section, in more general scenarios 
different users can be involved in making decisions. In such 
cases it could be interesting to ask the user different 
questions to get a better feeling of what decisions to trust. 
These questions could range from high-level questions like: 
How familiar are you with the given model on a scale from 1 
to 5? to low-level questions like: Select the decisions that are 
important to you (and thus can be trusted) from the list of 
conflicting decisions. This idea has yet to be elaborated and 

I
o

o
o

o
x x

o

xx

o o

I
o

o
o

o
x x

oo o
o

o o
S4:

S5: x

 
Figure 4.  Allow conflicts strategies. 



tested to work out the details. But we think that it could 
provide useful information and help to assist users even 
better. In any case the decisions that can be trusted to be 
valid are used for a conservative reasoning process just like 
in the described in the strategy. 

B. Identifying a Suitable Alternative  

In case the assumption that a solution exist is wrong, 
meaning that the conflict cannot be resolved with the user 
satisfied, different strategies have to be exercised to guide 
the user to an acceptable solution. The details of these 
strategies have yet to be worked out as well, but the main 
ideas to get to nearest solution are: 

Users can weight their decisions according to the 
importance to them. To avoid additional user input another 
possibility would be to somehow automate the weighting 
according to the decision history. With the help of such 
weights an optimal compromise could then be found via 
algorithms like the ones used to solve the Knapsack problem 
[20]. Of course also less complex solution, like finding the 
nearest solution as described by White et al. [6] or Felfernig 
et al. [4], could be sufficient. 

VI. USER GUIDANCE – THE BIGGER PICTURE 

Indeed, looking at the bigger picture, our vision is to 
provide such guidance not only to product configuration but 
also to design modeling and traceability management. We 
discuss in [12] that the user guidance problem during product 
configuration is not that different from the user guidance 
problem elsewhere. For example we want to use 
technologies developed in this modeling scenario also for 
modeling with the UML in the context of semantic 
constraints to ensure different UML views of a system to be 
coherent [15]. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work, we presented our vision of user guidance for 
model scenarios, especially product configuration. We 
described strategies of how to manage and resolve conflicts 
during the configuration process, which we hope will also be 
applicable for UML and other modeling scenarios. These 
strategies are used for resolving conflicts during the 
configuration process, the reasoning occurs incrementally 
and is refined with every decision users make.  

Once we have evaluated and validated these concrete 
strategies for the product configuration scenario and 
demonstrated that they are effective, we are planning to 
apply our techniques to UML modeling scenarios. During 
this transition we also plan to refine the roughly outlined 
strategies for Trust based on user queries and Identifying a 
Suitable Alternative. Open issues that also need to be 
investigated are how to handle several independent conflicts 
during the configuration process and how these strategies 
could be applied to a multi-user configurator. 

 
 
 
 

ACKNOWLEDGMENT 

This research was funded by the Austrian FWF under 
agreement P21321-N15. 

 

REFERENCES 

[1] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner, and C. 

Federspiel. DOPLER: An Adaptable Tool Suite for Product 

Line Engineering. in 11th International Software Product 

Line Conference (SPLC 2007), Proceedings: The Second 

Volume. 2007. Kyoto, Japan: Kindai Kagaku Sha Co. Ltd., 

Tokyo. 

[2] T. Asikainen, T. Männistö, and T. Soininen, Using a 

Configurator for Modelling and Configuring Software 

Product Lines based on Feature Models, in Workshop on 

Software Variability Management for Product Derivation in 

conjunction with Software Product Line Conference. 2004: 

Boston, Massachusetts, USA. 

[3] B. Yu and H.J. Skovgaard, A Configuration Tool to Increase 

Product Competitiveness. IEEE Intelligent Systems, 1998. 

13(4): p. 34-41. 

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. 

Intelligent Support for Interactive Configuration of Mass-

Customized Products. in Industrial and Engineering 

Applications of Artificial Intelligence and Expert Systems 

IEA/AIE. 2001. Budapest, Hungary. 

[5] P. Trinidad and A. Ruiz-Cortés, Abductive Reasoning and 

Automated Analysis of Feature Models: How are they 

connected?, in VaMoS. 2009: Sevilla, Spain. p. 145-153. 

[6] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, and A. 

Ruiz-Cortés, Automated Diagnosis of Product-Line 

Configuration Errors in Feature Models, in Software Product 

Lines, 12th International Conference. 2008: Limerick, 

Ireland. p. 225-234. 

[7] M. Davis, G. Logemann, and D. Loveland, A machine 

program for theorem-proving. Commun. ACM, 1962. 5(7): p. 

394-397. 

[8] R. Balzer. Tolerating Inconsistency. in Proceedings of 13th 

International Conference on Software Engineering (ICSE). 

1991. 

[9] S. Fickas, M. Feather, and J. Kramer, Proceedings of ICSE-97 

Workshop on Living with Inconsistency. . 1997, Boston, USA. 

[10] DELL Website. [Accessed February 12th, 2009]; Available 

from: http://www.dell.com/. 

[11] M.L. Rosa, W.M.P.v.d. Aalst, M. Dumas, and A.H.M.t. 

Hofstede, Questionnaire-based variability modeling for 

system configuration. Software and System Modeling, 2009. 

8(2): p. 251-274. 

[12] A. Nöhrer and A. Egyed, Optimizing User Guidance during 

Product Configuration. 2009: unpublished. 

[13] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, Automated 

Reasoning on Feature Models, in CAiSE. 2005. p. 491-503. 

http://www.dell.com/


[14] A. Egyed. Instant Consistency Checking for the UML. in 

Proceedings of the International Conference on Software 

Engineering (ICSE). 2006. 

[15] A. Egyed. Fixing Inconsistencies in UML Design Models. in 

Proceedings of the International Conference on Software 

Engineering 2007. 

[16] A. Egyed, E. Letier, and A. Finkelstein. Generating and 

Evaluating Choices for Fixing Inconsistencies in UML Design 

Models. in Proceedings of the 23rd International Conference 

on Automated Software Engineering (ASE). 2008. L'Aquila, 

Italy. 

[17] H.v. Maaren and S. Wieringa. Finding Guaranteed MUSes 

Fast. in 11th International Conference, SAT. 2008. 

Guangzhou, China. 

[18] C.M. Li and F. Manyà, MaxSAT, Hard and Soft Constraints, 

in Handbook of Satisfiability, A. Biere, et al., Editors. 2009, 

IOS Press. 

[19] R.J. Wallace and E.C. Freuder, Heuristic Methods for Over-

Constrained Constraint Satisfaction Problems, in Over-

Constrained Systems, M. Jampel, E.C. Freuder, and M.J. 

Maher, Editors. 1995, Springer. 

[20] G. Borradaile, B. Heeringa, and G.T. Wilfong, Approximation 

Algorithms for Constrained Knapsack Problems. CoRR, 

2009. abs/0910.0777. 
 

 


